Liapunov-type inequality for universal integral
نویسندگان
چکیده
Integral Hamzeh Agahi,1,† Adel Mohammadpour,1,∗ Radko Mesiar,2,3,‡ S. Mansour Vaezpour1,§ Department of Statistics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15914, Iran Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology, SK-81368 Bratislava, Slovakia Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, 182 08 Praha 8, Czech Republic
منابع مشابه
Results of the Chebyshev type inequality for Pseudo-integral
In this paper, some results of the Chebyshev type integral inequality for the pseudo-integral are proven. The obtained results, are related to the measure of a level set of the maximum and the sum of two non-negative integrable functions. Finally, we applied our results to the case of comonotone functions.
متن کاملLiapunov-type Integral Inequalities for P-laplacian Dynamic Equations on Time Scales
In this paper, we estimate Liapunov-type integral inequalities for a single, cycled, and coupled dynamic system of one-dimensional p-Laplacian problems with weight functions having stronger singularities.
متن کاملSome new Ostrowski type fractional integral inequalities for generalized $(r;g,s,m,varphi)$-preinvex functions via Caputo $k$-fractional derivatives
In the present paper, the notion of generalized $(r;g,s,m,varphi)$-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo $k$-fractional derivatives. At the end, some applications to special means are given.
متن کاملGeneral Chebyshev type inequalities for universal integral
A new inequality for the universal integral on abstract spaces is obtained in a rather general form. As two corollaries, Minkowski’s and Chebyshev’s type inequalities for the universal integral are obtained. The main results of this paper generalize some previous results obtained for special fuzzy integrals, e.g., Choquet and Sugeno integrals. Furthermore, related inequalities for seminormed in...
متن کاملA generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Intell. Syst.
دوره 27 شماره
صفحات -
تاریخ انتشار 2012